Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

The generalized strong subadditivity of the von Neumann entropy for bosonic quantum systems (2105.05627v2)

Published 12 May 2021 in quant-ph, math-ph, math.FA, math.MP, and math.PR

Abstract: We prove a generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum Gaussian systems. Such generalization determines the minimum values of linear combinations of the entropies of subsystems associated to arbitrary linear functions of the quadratures, and holds for arbitrary quantum states including the scenario where the entropies are conditioned on a memory quantum system. We apply our result to prove new entropic uncertainty relations with quantum memory, a generalization of the quantum Entropy Power Inequality, and the linear time scaling of the entanglement entropy produced by quadratic Hamiltonians.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Youtube Logo Streamline Icon: https://streamlinehq.com