Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Spectral risk-based learning using unbounded losses (2105.04816v1)

Published 11 May 2021 in stat.ML and cs.LG

Abstract: In this work, we consider the setting of learning problems under a wide class of spectral risk (or "L-risk") functions, where a Lipschitz-continuous spectral density is used to flexibly assign weight to extreme loss values. We obtain excess risk guarantees for a derivative-free learning procedure under unbounded heavy-tailed loss distributions, and propose a computationally efficient implementation which empirically outperforms traditional risk minimizers in terms of balancing spectral risk and misclassification error.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.