Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Matroids are not Ehrhart positive (2105.04465v3)

Published 10 May 2021 in math.CO

Abstract: In this article we disprove the conjectures asserting the positivity of the coefficients of the Ehrhart polynomial of matroid polytopes by De Loera, Haws and K\"oppe (2007) and of generalized permutohedra by Castillo and Liu (2015). We prove constructively that for every $n\geq 19$ there exist connected matroids on $n$ elements that are not Ehrhart positive. Also, we prove that for every $k\geq 3$ there exist connected matroids of rank $k$ that are not Ehrhart positive. Our proofs rely on our previous results on the geometric interpretation of the operation of circuit-hyperplane relaxation and our formulas for the Ehrhart polynomials of hypersimplices and minimal matroids. This allows us to give a precise expression for the Ehrhart polynomials of all sparse paving matroids, a class of matroids which is conjectured to be predominant and which contains the counterexamples arising from our construction.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)