Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rational points of lattice ideals on a toric variety and toric codes (2105.04257v2)

Published 10 May 2021 in math.AG, cs.IT, math.AC, math.CO, math.IT, and math.NT

Abstract: We show that the number of rational points of a subgroup inside a toric variety over a finite field defined by a homogeneous lattice ideal can be computed via Smith normal form of the matrix whose columns constitute a basis of the lattice. This generalizes and yields a concise toric geometric proof of the same fact proven purely algebraically by Lopez and Villarreal for the case of a projective space and a standard homogeneous lattice ideal of dimension one. We also prove a Nullstellensatz type theorem over a finite field establishing a one to one correspondence between subgroups of the dense split torus and certain homogeneous lattice ideals. As application, we compute the main parameters of generalized toric codes on subgroups of the torus of Hirzebruch surfaces, generalizing the existing literature.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)