Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural Machine Translation (2105.03953v1)

Published 9 May 2021 in cs.CL and cs.AI

Abstract: The data scarcity in low-resource languages has become a bottleneck to building robust neural machine translation systems. Fine-tuning a multilingual pre-trained model (e.g., mBART (Liu et al., 2020)) on the translation task is a good approach for low-resource languages; however, its performance will be greatly limited when there are unseen languages in the translation pairs. In this paper, we present a continual pre-training (CPT) framework on mBART to effectively adapt it to unseen languages. We first construct noisy mixed-language text from the monolingual corpus of the target language in the translation pair to cover both the source and target languages, and then, we continue pre-training mBART to reconstruct the original monolingual text. Results show that our method can consistently improve the fine-tuning performance upon the mBART baseline, as well as other strong baselines, across all tested low-resource translation pairs containing unseen languages. Furthermore, our approach also boosts the performance on translation pairs where both languages are seen in the original mBART's pre-training. The code is available at https://github.com/zliucr/cpt-nmt.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zihan Liu (102 papers)
  2. Genta Indra Winata (94 papers)
  3. Pascale Fung (151 papers)
Citations (40)
Github Logo Streamline Icon: https://streamlinehq.com