Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The layer-wise L1 Loss Landscape of Neural Nets is more complex around local minima (2105.02831v1)

Published 6 May 2021 in stat.ML and cs.LG

Abstract: For fixed training data and network parameters in the other layers the L1 loss of a ReLU neural network as a function of the first layer's parameters is a piece-wise affine function. We use the Deep ReLU Simplex algorithm to iteratively minimize the loss monotonically on adjacent vertices and analyze the trajectory of these vertex positions. We empirically observe that in a neighbourhood around a local minimum, the iterations behave differently such that conclusions on loss level and proximity of the local minimum can be made before it has been found: Firstly the loss seems to decay exponentially slow at iterated adjacent vertices such that the loss level at the local minimum can be estimated from the loss levels of subsequently iterated vertices, and secondly we observe a strong increase of the vertex density around local minima. This could have far-reaching consequences for the design of new gradient-descent algorithms that might improve convergence rate by exploiting these facts.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube