Associativity of fusion products of $C_1$-cofinite ${\mathbb N}$-gradable modules of vertex operator algebra (2105.01851v3)
Abstract: We prove an associative law of the fusion products $\boxtimes$ of $C_1$-cofinite ${\mathbb N}$-gradable modules for a vertex operator algebra $V$. To be more precise, for $C_1$-cofinite ${\mathbb N}$-gradable $V$-modules $A,B,C$ and their fusion products $(A!\boxtimes! B, {\cal Y}{AB})$, $((A!\boxtimes! B)!\boxtimes! C, {\cal Y}{(AB)C})$, $(B!\boxtimes! C, {\cal Y}{BC})$, $(A!\boxtimes! (B!\boxtimes! C),{\cal Y}{A(BC)})$ with logarithmic intertwining operators ${\cal Y}{AB},\ldots,{\cal Y}{A(BC)}$ satisfying the universal properties for ${\mathbb N}$-gradable modules, we prove that four-point correlation functions $\langle \theta, {\cal Y}{A(BC)}(v,x){\cal Y}{BC}(u,y)w\rangle$ and $\langle \theta', {\cal Y}{(AB)C}({\cal Y}{AB}(v,x-y)u,y)w\rangle$ are locally normally convergent over ${(x,y)\in {\mathbb C}2 \mid 0!<!|x!-!y|!<!|y|!<!|x|}$. We then take their respective principal branches $\tilde{F}(\langle \theta,{\cal Y}{A(BC)}(v,x){\cal Y}{BC}(u,y)w\rangle)$ and $\tilde{F}(\langle \theta,{\cal Y}{(AB)C}({\cal Y}{AB)}(v,x-y)u,y)w\rangle)$ on ${\cal D}2!=!{(x,y)\in {\mathbb C}2 \mid 0!<!|x!-!y|!<!|y|!<!|x|, \mbox{ and } x,y,x!-!y\not\in {\mathbb R}{\leq 0}}$ and then show that there is an isomorphism $\phi_{[AB]C}:(A\boxtimes B)\boxtimes C \to A\boxtimes (B\boxtimes C)$ such that $$ \widetilde{F}(\langle \theta, {\cal Y}{A(BC)}(v,x){\cal Y}{BC}(u,y)w\rangle) =\tilde{F}(\langle \phi_{[AB]C}{\ast}(\theta), {\cal Y}{(AB)C}({\cal Y}{AB}(v,x-y)u,y)w)\rangle $$ on ${\cal D}2$ for $\theta\in (A\boxtimes (B\boxtimes C)){\vee}$, $v\in A$, $u\in B$, and $w\in C$, where $W{\vee}$ denotes the contragredient module of $W$ and $\phi_{[AB]C}{\ast}$ denotes the dual of $\phi_{[AB]C}$. We also prove the pentagon identity.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.