Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Lozenge tilings and the Gaussian free field on a cylinder (2105.00551v2)

Published 2 May 2021 in math.PR, math-ph, math.CO, and math.MP

Abstract: We use the periodic Schur process, introduced in arXiv:math/0601019v1, to study the random height function of lozenge tilings (equivalently, dimers) on an infinite cylinder distributed under two variants of the $q{\operatorname{vol}}$ measure. Under the first variant, corresponding to random cylindric partitions, the height function converges to a deterministic limit shape and fluctuations around it are given by the Gaussian free field in the conformal structure predicted by the Kenyon-Okounkov conjecture. Under the second variant, corresponding to an unrestricted dimer model on the cylinder, the fluctuations are given by the same Gaussian free field with an additional discrete Gaussian shift component. Fluctuations of the latter type have been previously conjectured for dimer models on planar domains with holes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube