Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dynamics of a randomly kicked particle (2104.15115v1)

Published 30 Apr 2021 in cond-mat.stat-mech and physics.class-ph

Abstract: Levy walk (LW) process has been used as a simple model for describing anomalous diffusion in which the mean squared displacement of the walker grows non-linearly with time in contrast to the diffusive motion described by simple random walks or Brownian motion. In this paper we study a simple extension of the LW model in one dimension by introducing correlation among the velocities of the walker in different (flight) steps. Such correlation is absent in the LW model. The correlations are introduced by making the velocity at a step dependent on the velocity at the previous step in addition to the usual random noise ('kick') that the particle gets at random time intervals from the surrounding medium as in the LW model. Consequently the dynamics of the position becomes non-Markovian. We study the statistical properties of velocity and position of the walker at time t, both analytically and numerically. We show how different choices of the distribution of the random time intervals and the degree of correlation, controlled by a parameter r, affect the late time behaviour of these quantities.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.