Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RANSIC: Fast and Highly Robust Estimation for Rotation Search and Point Cloud Registration using Invariant Compatibility (2104.09133v3)

Published 19 Apr 2021 in cs.CV and cs.RO

Abstract: Correspondence-based rotation search and point cloud registration are two fundamental problems in robotics and computer vision. However, the presence of outliers, sometimes even occupying the great majority of the putative correspondences, can make many existing algorithms either fail or have very high computational cost. In this paper, we present RANSIC (RANdom Sampling with Invariant Compatibility), a fast and highly robust method applicable to both problems based on a new paradigm combining random sampling with invariance and compatibility. Generally, RANSIC starts with randomly selecting small subsets from the correspondence set, then seeks potential inliers as graph vertices from the random subsets through the compatibility tests of invariants established in each problem, and eventually returns the eligible inliers when there exists at least one K-degree vertex (K is automatically updated depending on the problem) and the residual errors satisfy a certain termination condition at the same time. In multiple synthetic and real experiments, we demonstrate that RANSIC is fast for use, robust against over 95% outliers, and also able to recall approximately 100% inliers, outperforming other state-of-the-art solvers for both the rotation search and the point cloud registration problems.

Citations (23)

Summary

We haven't generated a summary for this paper yet.