Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DANIEL: A Fast and Robust Consensus Maximization Method for Point Cloud Registration with High Outlier Ratios (2110.05075v2)

Published 11 Oct 2021 in cs.CV and cs.RO

Abstract: Correspondence-based point cloud registration is a cornerstone in geometric computer vision, robotics perception, photogrammetry and remote sensing, which seeks to estimate the best rigid transformation between two point clouds from the correspondences established over 3D keypoints. However, due to limited robustness and accuracy, current 3D keypoint matching techniques are very prone to yield outliers, probably even in very large numbers, making robust estimation for point cloud registration of great importance. Unfortunately, existing robust methods may suffer from high computational cost or insufficient robustness when encountering high (or even extreme) outlier ratios, hardly ideal enough for practical use. In this paper, we present a novel time-efficient RANSAC-type consensus maximization solver, named DANIEL (Double-layered sAmpliNg with consensus maximization based on stratIfied Element-wise compatibiLity), for robust registration. DANIEL is designed with two layers of random sampling, in order to find inlier subsets with the lowest computational cost possible. Specifically, we: (i) apply the rigidity constraint to prune raw outliers in the first layer of one-point sampling, (ii) introduce a series of stratified element-wise compatibility tests to conduct rapid compatibility checking between minimal models so as to realize more efficient consensus maximization in the second layer of two-point sampling, and (iii) probabilistic termination conditions are employed to ensure the timely return of the final inlier set. Based on a variety of experiments over multiple real datasets, we show that DANIEL is robust against over 99% outliers and also significantly faster than existing state-of-the-art robust solvers (e.g. RANSAC, FGR, GORE).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Lei Sun (138 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.