Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

TetraPackNet: Four-Corner-Based Object Detection in Logistics Use-Cases (2104.09123v2)

Published 19 Apr 2021 in cs.CV, cs.AI, and cs.LG

Abstract: While common image object detection tasks focus on bounding boxes or segmentation masks as object representations, we consider the problem of finding objects based on four arbitrary vertices. We propose a novel model, named TetraPackNet, to tackle this problem. TetraPackNet is based on CornerNet and uses similar algorithms and ideas. It is designated for applications requiring high-accuracy detection of regularly shaped objects, which is the case in the logistics use-case of packaging structure recognition. We evaluate our model on our specific real-world dataset for this use-case. Baselined against a previous solution, consisting of a Mask R-CNN model and suitable post-processing steps, TetraPackNet achieves superior results (9% higher in accuracy) in the sub-task of four-corner based transport unit side detection.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube