Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial methods in statistical inference: theory and practice (2104.07317v2)

Published 15 Apr 2021 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: This survey provides an exposition of a suite of techniques based on the theory of polynomials, collectively referred to as polynomial methods, which have recently been applied to address several challenging problems in statistical inference successfully. Topics including polynomial approximation, polynomial interpolation and majorization, moment space and positive polynomials, orthogonal polynomials and Gaussian quadrature are discussed, with their major probabilistic and statistical applications in property estimation on large domains and learning mixture models. These techniques provide useful tools not only for the design of highly practical algorithms with provable optimality, but also for establishing the fundamental limits of the inference problems through the method of moment matching. The effectiveness of the polynomial method is demonstrated in concrete problems such as entropy and support size estimation, distinct elements problem, and learning Gaussian mixture models.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com