Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Mixture Models via Mixtures of Polynomials (1603.08482v1)

Published 28 Mar 2016 in stat.ML and cs.LG

Abstract: Mixture modeling is a general technique for making any simple model more expressive through weighted combination. This generality and simplicity in part explains the success of the Expectation Maximization (EM) algorithm, in which updates are easy to derive for a wide class of mixture models. However, the likelihood of a mixture model is non-convex, so EM has no known global convergence guarantees. Recently, method of moments approaches offer global guarantees for some mixture models, but they do not extend easily to the range of mixture models that exist. In this work, we present Polymom, an unifying framework based on method of moments in which estimation procedures are easily derivable, just as in EM. Polymom is applicable when the moments of a single mixture component are polynomials of the parameters. Our key observation is that the moments of the mixture model are a mixture of these polynomials, which allows us to cast estimation as a Generalized Moment Problem. We solve its relaxations using semidefinite optimization, and then extract parameters using ideas from computer algebra. This framework allows us to draw insights and apply tools from convex optimization, computer algebra and the theory of moments to study problems in statistical estimation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.