Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eternal distance-k domination on graphs (2104.03835v2)

Published 8 Apr 2021 in math.CO and cs.DM

Abstract: Eternal domination is a dynamic process by which a graph is protected from an infinite sequence of vertex intrusions. In eternal distance-$k$ domination, guards initially occupy the vertices of a distance-$k$ dominating set. After a vertex is attacked, guards ``defend'' by each moving up to distance $k$ to form a distance-$k$ dominating set, such that some guard occupies the attacked vertex. The eternal distance-$k$ domination number of a graph is the minimum number of guards needed to defend against any sequence of attacks. The process is well-studied for the situation where $k=1$. We introduce eternal distance-$k$ domination for $k > 1$. Determining whether a given set is an eternal distance-$k$ domination set is in EXP, and in this paper we provide a number of results for paths and cycles, and relate this parameter to graph powers and domination in general. For trees we use decomposition arguments to bound the eternal distance-$k$ domination numbers, and solve the problem entirely in the case of perfect $m$-ary trees.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Danielle Cox (7 papers)
  2. Erin Meger (8 papers)
  3. M. E. Messinger (11 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.