Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the m-eternal Domination Number of Cactus Graphs (1907.07910v1)

Published 18 Jul 2019 in cs.DS, cs.DM, and math.CO

Abstract: Given a graph $G$, guards are placed on vertices of $G$. Then vertices are subject to an infinite sequence of attacks so that each attack must be defended by a guard moving from a neighboring vertex. The m-eternal domination number is the minimum number of guards such that the graph can be defended indefinitely. In this paper we study the m-eternal domination number of cactus graphs, that is, connected graphs where each edge lies in at most two cycles, and we consider three variants of the m-eternal domination number: first variant allows multiple guards to occupy a single vertex, second variant does not allow it, and in the third variant additional "eviction" attacks must be defended. We provide a new upper bound for the m-eternal domination number of cactus graphs, and for a subclass of cactus graphs called Christmas cactus graphs, where each vertex lies in at most two cycles, we prove that these three numbers are equal. Moreover, we present a linear-time algorithm for computing them.

Citations (7)

Summary

We haven't generated a summary for this paper yet.