Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Down the Rabbit Hole: On References in Networks of Decoy Elements (2104.03631v1)

Published 8 Apr 2021 in cs.CR and cs.NI

Abstract: Deception technology has proven to be a sound approach against threats to information systems. Aside from well-established honeypots, decoy elements, also known as honeytokens, are an excellent method to address various types of threats. Decoy elements are causing distraction and uncertainty to an attacker and help detecting malicious activity. Deception is meant to be complementing firewalls and intrusion detection systems. Particularly insider threats may be mitigated with deception methods. While current approaches consider the use of multiple decoy elements as well as context-sensitivity, they do not sufficiently describe a relationship between individual elements. In this work, inter-referencing decoy elements are introduced as a plausible extension to existing deception frameworks, leading attackers along a path of decoy elements. A theoretical foundation is introduced, as well as a stochastic model and a reference implementation. It was found that the proposed system is suitable to enhance current decoy frameworks by adding a further dimension of inter-connectivity and therefore improve intrusion detection and prevention.

Citations (3)

Summary

We haven't generated a summary for this paper yet.