Papers
Topics
Authors
Recent
2000 character limit reached

Spectral statistics of high dimensional sample covariance matrix with unbounded population spectral norm

Published 7 Apr 2021 in math.ST and stat.TH | (2104.03417v1)

Abstract: In this paper, we establish some new central limit theorems for certain spectral statistics of a high-dimensional sample covariance matrix under a divergent spectral norm population model. This model covers the divergent spiked population model as a special case. Meanwhile, the number of the spiked eigenvalues can either be fixed or grow to infinity. It is seen from our theorems that the divergence of population spectral norm affects the fluctuations of the linear spectral statistics in a fickle way, depending on the divergence rate.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.