Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CLT for LSS of sample covariance matrices with unbounded dispersions (2106.10135v1)

Published 18 Jun 2021 in math.ST, math.PR, stat.ME, and stat.TH

Abstract: Under the high-dimensional setting that data dimension and sample size tend to infinity proportionally, we derive the central limit theorem (CLT) for linear spectral statistics (LSS) of large-dimensional sample covariance matrix. Different from existing literature, our results do not require the assumption that the population covariance matrices are bounded. Moreover, many common kernel functions in the real data such as logarithmic functions and polynomial functions are allowed in this paper. In our model, the number of spiked eigenvalues can be fixed or tend to infinity. One salient feature of the asymptotic mean and covariance in our proposed central limit theorem is that it is related to the divergence order of the population spectral norm.

Summary

We haven't generated a summary for this paper yet.