Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Statistical Analysis of Summarization Evaluation Metrics using Resampling Methods (2104.00054v2)

Published 31 Mar 2021 in cs.CL

Abstract: The quality of a summarization evaluation metric is quantified by calculating the correlation between its scores and human annotations across a large number of summaries. Currently, it is unclear how precise these correlation estimates are, nor whether differences between two metrics' correlations reflect a true difference or if it is due to mere chance. In this work, we address these two problems by proposing methods for calculating confidence intervals and running hypothesis tests for correlations using two resampling methods, bootstrapping and permutation. After evaluating which of the proposed methods is most appropriate for summarization through two simulation experiments, we analyze the results of applying these methods to several different automatic evaluation metrics across three sets of human annotations. We find that the confidence intervals are rather wide, demonstrating high uncertainty in the reliability of automatic metrics. Further, although many metrics fail to show statistical improvements over ROUGE, two recent works, QAEval and BERTScore, do in some evaluation settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Daniel Deutsch (28 papers)
  2. Rotem Dror (14 papers)
  3. Dan Roth (222 papers)
Citations (66)

Summary

We haven't generated a summary for this paper yet.