Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DA-DETR: Domain Adaptive Detection Transformer with Information Fusion (2103.17084v2)

Published 31 Mar 2021 in cs.CV

Abstract: The recent detection transformer (DETR) simplifies the object detection pipeline by removing hand-crafted designs and hyperparameters as employed in conventional two-stage object detectors. However, how to leverage the simple yet effective DETR architecture in domain adaptive object detection is largely neglected. Inspired by the unique DETR attention mechanisms, we design DA-DETR, a domain adaptive object detection transformer that introduces information fusion for effective transfer from a labeled source domain to an unlabeled target domain. DA-DETR introduces a novel CNN-Transformer Blender (CTBlender) that fuses the CNN features and Transformer features ingeniously for effective feature alignment and knowledge transfer across domains. Specifically, CTBlender employs the Transformer features to modulate the CNN features across multiple scales where the high-level semantic information and the low-level spatial information are fused for accurate object identification and localization. Extensive experiments show that DA-DETR achieves superior detection performance consistently across multiple widely adopted domain adaptation benchmarks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Jingyi Zhang (63 papers)
  2. Jiaxing Huang (68 papers)
  3. Zhipeng Luo (37 papers)
  4. Gongjie Zhang (20 papers)
  5. Xiaoqin Zhang (39 papers)
  6. Shijian Lu (151 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.