Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional DETR V2: Efficient Detection Transformer with Box Queries (2207.08914v1)

Published 18 Jul 2022 in cs.CV

Abstract: In this paper, we are interested in Detection Transformer (DETR), an end-to-end object detection approach based on a transformer encoder-decoder architecture without hand-crafted postprocessing, such as NMS. Inspired by Conditional DETR, an improved DETR with fast training convergence, that presented box queries (originally called spatial queries) for internal decoder layers, we reformulate the object query into the format of the box query that is a composition of the embeddings of the reference point and the transformation of the box with respect to the reference point. This reformulation indicates the connection between the object query in DETR and the anchor box that is widely studied in Faster R-CNN. Furthermore, we learn the box queries from the image content, further improving the detection quality of Conditional DETR still with fast training convergence. In addition, we adopt the idea of axial self-attention to save the memory cost and accelerate the encoder. The resulting detector, called Conditional DETR V2, achieves better results than Conditional DETR, saves the memory cost and runs more efficiently. For example, for the DC$5$-ResNet-$50$ backbone, our approach achieves $44.8$ AP with $16.4$ FPS on the COCO $val$ set and compared to Conditional DETR, it runs $1.6\times$ faster, saves $74$\% of the overall memory cost, and improves $1.0$ AP score.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiaokang Chen (39 papers)
  2. Fangyun Wei (53 papers)
  3. Gang Zeng (40 papers)
  4. Jingdong Wang (236 papers)
Citations (29)