Besse conjecture with positive isotropic curvature (2103.15482v1)
Abstract: The critical point equation arises as a critical point of the total scalar curvature functional defined on the space of constant scalar curvature metrics of a unit volume on a compact manifold. In this equation, there exists a function $f$ on the manifold that satisfies the following $$ (1+f){\rm Ric} = Ddf + \frac{nf +n-1}{n(n-1)}sg. $$ It has been conjectured that if $(g, f)$ is a solution of the critical point equation, then $g$ is Einstein and so $(M, g)$ is isometric to a standard sphere. In this paper, we show that this conjecture is true if the given Riemannian metric has positive isotropic curvature.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.