Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Symmetries and Geometries of Qubits, and their Uses (2103.14105v2)

Published 25 Mar 2021 in quant-ph, math-ph, and math.MP

Abstract: The symmetry SU(2) and its geometric Bloch Sphere rendering are familiar for a qubit (spin-1/2) but extension of symmetries and geometries have been investigated far less for multiple qubits, even just a pair of them, that are central to quantum information. In the last two decades, two different approaches with independent starting points and motivations have come together for this purpose. One was to develop the unitary time evolution of two or more qubits for studying quantum correlations, exploiting the relevant Lie algebras and especially sub-algebras of the Hamiltonians involved, and arriving at connections to finite projective geometries and combinatorial designs. Independently, geometers studying projective ring lines and associated finite geometries have come to parallel conclusions. This review brings together both the Lie algebraic and group representation perspective of quantum physics and the geometric algebraic one, along with connections to complex quaternions. Together, all this may be seen as further development of Felix Klein's Erlangen Program for symmetries and geometries. In particular, the fifteen generators of the continuous SU(4) Lie group for two-qubits can be placed in one-to-one correspondence with finite projective geometries, combinatorial Steiner designs, and finite quaternionic groups. The very different perspectives may provide further insight into problems in quantum information. Extensions are considered for multiple qubits and higher spin or higher dimensional qudits.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)