Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Analysis of Image-Based Learning Techniques for Malware Classification (2103.13827v1)

Published 24 Mar 2021 in cs.CR and cs.LG

Abstract: In this paper, we consider malware classification using deep learning techniques and image-based features. We employ a wide variety of deep learning techniques, including multilayer perceptrons (MLP), convolutional neural networks (CNN), long short-term memory (LSTM), and gated recurrent units (GRU). Amongst our CNN experiments, transfer learning plays a prominent role specifically, we test the VGG-19 and ResNet152 models. As compared to previous work, the results presented in this paper are based on a larger and more diverse malware dataset, we consider a wider array of features, and we experiment with a much greater variety of learning techniques. Consequently, our results are the most comprehensive and complete that have yet been published.

Citations (28)

Summary

We haven't generated a summary for this paper yet.