Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Leveraging Unlabeled Data for Entity-Relation Extraction through Probabilistic Constraint Satisfaction (2103.11062v1)

Published 20 Mar 2021 in cs.LG and cs.CL

Abstract: We study the problem of entity-relation extraction in the presence of symbolic domain knowledge. Such knowledge takes the form of an ontology defining relations and their permissible arguments. Previous approaches set out to integrate such knowledge in their learning approaches either through self-training, or through approximations that lose the precise meaning of the logical expressions. By contrast, our approach employs semantic loss which captures the precise meaning of a logical sentence through maintaining a probability distribution over all possible states, and guiding the model to solutions which minimize any constraint violations. With a focus on low-data regimes, we show that semantic loss outperforms the baselines by a wide margin.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.