2000 character limit reached
Landscape analysis for shallow neural networks: complete classification of critical points for affine target functions (2103.10922v3)
Published 19 Mar 2021 in cs.LG, cs.NA, and math.NA
Abstract: In this paper, we analyze the landscape of the true loss of neural networks with one hidden layer and ReLU, leaky ReLU, or quadratic activation. In all three cases, we provide a complete classification of the critical points in the case where the target function is affine and one-dimensional. In particular, we show that there exist no local maxima and clarify the structure of saddle points. Moreover, we prove that non-global local minima can only be caused by `dead' ReLU neurons. In particular, they do not appear in the case of leaky ReLU or quadratic activation. Our approach is of a combinatorial nature and builds on a careful analysis of the different types of hidden neurons that can occur.