Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multilevel Approach to Stochastic Trace Estimation (2103.10516v1)

Published 18 Mar 2021 in math.NA and cs.NA

Abstract: This article presents a randomized matrix-free method for approximating the trace of $f({\bf A})$, where ${\bf A}$ is a large symmetric matrix and $f$ is a function analytic in a closed interval containing the eigenvalues of ${\bf A}$. Our method uses a combination of stochastic trace estimation (i.e., Hutchinson's method), Chebyshev approximation, and multilevel Monte Carlo techniques. We establish general bounds on the approximation error of this method by extending an existing error bound for Hutchinson's method to multilevel trace estimators. Numerical experiments are conducted for common applications such as estimating the log-determinant, nuclear norm, and Estrada index, and triangle counting in graphs. We find that using multilevel techniques can substantially reduce the variance of existing single-level estimators.

Citations (8)

Summary

We haven't generated a summary for this paper yet.