Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved bounds on sample size for implicit matrix trace estimators (1308.2475v2)

Published 12 Aug 2013 in cs.NA and math.NA

Abstract: This article is concerned with Monte-Carlo methods for the estimation of the trace of an implicitly given matrix $A$ whose information is only available through matrix-vector products. Such a method approximates the trace by an average of $N$ expressions of the form $\wwt (A\ww)$, with random vectors $\ww$ drawn from an appropriate distribution. We prove, discuss and experiment with bounds on the number of realizations $N$ required in order to guarantee a probabilistic bound on the relative error of the trace estimation upon employing Rademacher (Hutchinson), Gaussian and uniform unit vector (with and without replacement) probability distributions. In total, one necessary bound and six sufficient bounds are proved, improving upon and extending similar estimates obtained in the seminal work of Avron and Toledo (2011) in several dimensions. We first improve their bound on $N$ for the Hutchinson method, dropping a term that relates to $rank(A)$ and making the bound comparable with that for the Gaussian estimator. We further prove new sufficient bounds for the Hutchinson, Gaussian and the unit vector estimators, as well as a necessary bound for the Gaussian estimator, which depend more specifically on properties of the matrix $A$. As such they may suggest for what type of matrices one distribution or another provides a particularly effective or relatively ineffective stochastic estimation method.

Citations (128)

Summary

We haven't generated a summary for this paper yet.