Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Targeting in Fundraising: A Causal Machine-Learning Approach (2103.10251v3)

Published 10 Mar 2021 in econ.EM, cs.LG, stat.AP, and stat.ML

Abstract: Ineffective fundraising lowers the resources charities can use to provide goods. We combine a field experiment and a causal machine-learning approach to increase a charity's fundraising effectiveness. The approach optimally targets a fundraising instrument to individuals whose expected donations exceed solicitation costs. Our results demonstrate that machine-learning-based optimal targeting allows the charity to substantially increase donations net of fundraising costs relative to uniform benchmarks in which either everybody or no one receives the gift. To that end, it (a) should direct its fundraising efforts to a subset of past donors and (b) never address individuals who were previously asked but never donated. Further, we show that the benefits of machine-learning-based optimal targeting even materialize when the charity only exploits publicly available geospatial information or applies the estimated optimal targeting rule to later fundraising campaigns conducted in similar samples. We conclude that charities not engaging in optimal targeting waste significant resources.

Citations (7)

Summary

We haven't generated a summary for this paper yet.