Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reconsidering Representation Alignment for Multi-view Clustering (2103.07738v1)

Published 13 Mar 2021 in cs.CV and cs.LG

Abstract: Aligning distributions of view representations is a core component of today's state of the art models for deep multi-view clustering. However, we identify several drawbacks with na\"ively aligning representation distributions. We demonstrate that these drawbacks both lead to less separable clusters in the representation space, and inhibit the model's ability to prioritize views. Based on these observations, we develop a simple baseline model for deep multi-view clustering. Our baseline model avoids representation alignment altogether, while performing similar to, or better than, the current state of the art. We also expand our baseline model by adding a contrastive learning component. This introduces a selective alignment procedure that preserves the model's ability to prioritize views. Our experiments show that the contrastive learning component enhances the baseline model, improving on the current state of the art by a large margin on several datasets.

Citations (90)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.