Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SCEI: A Smart-Contract Driven Edge Intelligence Framework for IoT Systems (2103.07050v2)

Published 12 Mar 2021 in cs.LG and cs.DC

Abstract: Federated learning (FL) enables collaborative training of a shared model on edge devices while maintaining data privacy. FL is effective when dealing with independent and identically distributed (iid) datasets, but struggles with non-iid datasets. Various personalized approaches have been proposed, but such approaches fail to handle underlying shifts in data distribution, such as data distribution skew commonly observed in real-world scenarios (e.g., driver behavior in smart transportation systems changing across time and location). Additionally, trust concerns among unacquainted devices and security concerns with the centralized aggregator pose additional challenges. To address these challenges, this paper presents a dynamically optimized personal deep learning scheme based on blockchain and federated learning. Specifically, the innovative smart contract implemented in the blockchain allows distributed edge devices to reach a consensus on the optimal weights of personalized models. Experimental evaluations using multiple models and real-world datasets demonstrate that the proposed scheme achieves higher accuracy and faster convergence compared to traditional federated and personalized learning approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. A. Srivastava, S. Sengupta, S.-J. Kang, K. Kant, M. Khan, S. A. Ali, S. R. Moore, B. C. Amadi, P. Kelly, S. Syed et al., “Deep learning for detecting diseases in gastrointestinal biopsy images,” in 2019 Systems and Information Engineering Design Symposium (SIEDS).   IEEE, 2019, pp. 1–4.
  2. A. D. Boursianis, M. S. Papadopoulou, P. Diamantoulakis, A. Liopa-Tsakalidi, P. Barouchas, G. Salahas, G. Karagiannidis, S. Wan, and S. K. Goudos, “Internet of things (iot) and agricultural unmanned aerial vehicles (uavs) in smart farming: a comprehensive review,” Internet of Things, p. 100187, 2020.
  3. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial Intelligence and Statistics.   PMLR, 2017, pp. 1273–1282.
  4. Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.
  5. H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning on non-iid data with reinforcement learning,” in IEEE INFOCOM 2020-IEEE Conference on Computer Communications.   IEEE, 2020, pp. 1698–1707.
  6. L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  7. Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive personalized federated learning,” arXiv preprint arXiv:2003.13461, 2020.
  8. Q. Wu, K. He, and X. Chen, “Personalized federated learning for intelligent iot applications: A cloud-edge based framework,” IEEE Open Journal of the Computer Society, vol. 1, pp. 35–44, 2020.
  9. S. Lee, X. Zheng, J. Hua, H. Vikalo, and C. Julien, “Opportunistic federated learning: An exploration of egocentric collaboration for pervasive computing applications,” in 2021 IEEE International Conference on Pervasive Computing and Communications (PerCom).   IEEE, 2021, pp. 1–8.
  10. C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous federated learning on heterogeneous devices: A survey,” arXiv preprint arXiv:2109.04269, 2021.
  11. C. Xu, Y. Qu, T. H. Luan, P. W. Eklund, Y. Xiang, and L. Gao, “An efficient and reliable asynchronous federated learning scheme for smart public transportation,” IEEE Transactions on Vehicular Technology, vol. 72, no. 5, pp. 6584–6598, 2023.
  12. S. Warnat-Herresthal, H. Schultze, K. L. Shastry, S. Manamohan, S. Mukherjee, V. Garg, R. Sarveswara, K. Händler, P. Pickkers, N. A. Aziz et al., “Swarm learning for decentralized and confidential clinical machine learning,” Nature, vol. 594, no. 7862, pp. 265–270, 2021.
  13. C. Xu, Y. Qu, T. H. Luan, P. W. Eklund, Y. Xiang, and L. Gao, “A lightweight and attack-proof bidirectional blockchain paradigm for internet of things,” IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4371–4384, 2022.
  14. J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “Deepchain: Auditable and privacy-preserving deep learning with blockchain-based incentive,” IEEE Transactions on Dependable and Secure Computing, 2019.
  15. S. Rathore, Y. Pan, and J. H. Park, “Blockdeepnet: a blockchain-based secure deep learning for iot network,” Sustainability, vol. 11, no. 14, p. 3974, 2019.
  16. Y. Qu, C. Xu, L. Gao, Y. Xiang, and S. Yu, “Fl-sec: Privacy-preserving decentralized federated learning using signsgd for the internet of artificially intelligent things,” IEEE Internet of Things Magazine, vol. 5, no. 1, pp. 85–90, 2022.
  17. C. Xu, Y. Qu, P. W. Eklund, Y. Xiang, and L. Gao, “Bafl: an efficient blockchain-based asynchronous federated learning framework,” in 2021 IEEE Symposium on Computers and Communications (ISCC).   IEEE, 2021, pp. 1–6.
  18. R. Hu, Y. Guo, H. Li, Q. Pei, and Y. Gong, “Personalized federated learning with differential privacy,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9530–9539, 2020.
  19. H. B. McMahan et al., “Advances and open problems in federated learning,” Foundations and Trends® in Machine Learning, vol. 14, no. 1, 2021.
  20. M. Khodak, M.-F. F. Balcan, and A. S. Talwalkar, “Adaptive gradient-based meta-learning methods,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  21. V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task learning,” Advances in neural information processing systems, vol. 30, 2017.
  22. N. Shlezinger, S. Rini, and Y. C. Eldar, “The communication-aware clustered federated learning problem,” in 2020 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2020, pp. 2610–2615.
  23. K. Wang, R. Mathews, C. Kiddon, H. Eichner, F. Beaufays, and D. Ramage, “Federated evaluation of on-device personalization,” arXiv preprint arXiv:1910.10252, 2019.
  24. H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device federated learning,” IEEE Communications Letters, vol. 24, no. 6, pp. 1279–1283, 2019.
  25. J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mechanism for reliable federated learning: A joint optimization approach to combining reputation and contract theory,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 700–10 714, 2019.
  26. J. Li, Y. Shao, K. Wei, M. Ding, C. Ma, L. Shi, Z. Han, and H. V. Poor, “Blockchain assisted decentralized federated learning (blade-fl): Performance analysis and resource allocation,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 10, pp. 2401–2415, 2021.
  27. S. R. Pokhrel and J. Choi, “Federated learning with blockchain for autonomous vehicles: Analysis and design challenges,” IEEE Transactions on Communications, vol. 68, no. 8, pp. 4734–4746, 2020.
  28. Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Communication-efficient federated learning and permissioned blockchain for digital twin edge networks,” IEEE Internet of Things Journal, 2020.
  29. P. Ramanan and K. Nakayama, “Baffle: Blockchain based aggregator free federated learning,” in 2020 IEEE International Conference on Blockchain (Blockchain).   IEEE, 2020, pp. 72–81.
  30. H. B. Desai, M. S. Ozdayi, and M. Kantarcioglu, “Blockfla: Accountable federated learning via hybrid blockchain architecture,” in Proceedings of the Eleventh ACM Conference on Data and Application Security and Privacy, 2021, pp. 101–112.
  31. B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart contract and use cases in blockchain technology,” in 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT).   IEEE, 2018, pp. 1–4.
  32. L. Cui, X. Su, Z. Ming, Z. Chen, S. Yang, Y. Zhou, and W. Xiao, “Creat: Blockchain-assisted compression algorithm of federated learning for content caching in edge computing,” IEEE Internet of Things Journal, 2020.
  33. M. A. Rahman, M. S. Hossain, M. S. Islam, N. A. Alrajeh, and G. Muhammad, “Secure and provenance enhanced internet of health things framework: A blockchain managed federated learning approach,” Ieee Access, vol. 8, pp. 205 071–205 087, 2020.
  34. D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le, A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, “Federated learning meets blockchain in edge computing: Opportunities and challenges,” IEEE Internet of Things Journal, 2021.
  35. D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,” in 2014 {normal-{\{{USENIX}normal-}\}} Annual Technical Conference ({normal-{\{{USENIX}normal-}\}}{normal-{\{{ATC}normal-}\}} 14), 2014, pp. 305–319.
  36. W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li, “Paxos replicated state machines as the basis of a high-performance data store,” in Proc. NSDI’11, USENIX Conference on Networked Systems Design and Implementation, 2011, pp. 141–154.
  37. G. Idoje, T. Dagiuklas, and M. Iqbal, “Survey for smart farming technologies: Challenges and issues,” Computers & Electrical Engineering, vol. 92, p. 107104, 2021.
  38. B. Korber, W. M. Fischer, S. Gnanakaran, H. Yoon, J. Theiler, W. Abfalterer, N. Hengartner, E. E. Giorgi, T. Bhattacharya, B. Foley et al., “Tracking changes in sars-cov-2 spike: evidence that d614g increases infectivity of the covid-19 virus,” Cell, vol. 182, no. 4, pp. 812–827, 2020.
  39. Y. Li, Y. Zhou, A. Jolfaei, D. Yu, G. Xu, and X. Zheng, “Privacy-preserving federated learning framework based on chained secure multi-party computing,” IEEE Internet of Things Journal, 2020.
  40. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition.   Ieee, 2009, pp. 248–255.
  41. D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-Ortiz et al., “A public domain dataset for human activity recognition using smartphones.” in Esann, vol. 3, 2013, p. 3.
  42. T. Sztyler and H. Stuckenschmidt, “On-body localization of wearable devices: An investigation of position-aware activity recognition,” in 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom).   IEEE, 2016, pp. 1–9.
  43. C. Rajagopalan, D. Rawlinson, E. Goldberg, and G. Kowadlo, “Deep learning in a bilateral brain with hemispheric specialization,” arXiv preprint arXiv:2209.06862, 2022.
  44. T. Zhang, Z. Shen, J. Jin, and X. Zheng, “A democratically collaborative learning scheme for fog-enabled pervasive environments,” in 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops).   IEEE, 2020, pp. 1–4.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Chenhao Xu (14 papers)
  2. Jiaqi Ge (4 papers)
  3. Yong Li (628 papers)
  4. Yao Deng (18 papers)
  5. Longxiang Gao (38 papers)
  6. Mengshi Zhang (11 papers)
  7. Yong Xiang (38 papers)
  8. Xi Zheng (65 papers)
Citations (10)