Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Orientations into End-to-end Driving Model for Steering Control (2103.05846v1)

Published 10 Mar 2021 in cs.RO and cs.CV

Abstract: In this paper, we present a novel end-to-end deep neural network model for autonomous driving that takes monocular image sequence as input, and directly generates the steering control angle. Firstly, we model the end-to-end driving problem as a local path planning process. Inspired by the environmental representation in the classical planning algorithms(i.e. the beam curvature method), pixel-wise orientations are fed into the network to learn direction-aware features. Next, to handle the imbalanced distribution of steering values in training datasets, we propose an improvement on a cost-sensitive loss function named SteeringLoss2. Besides, we also present a new end-to-end driving dataset, which provides corresponding LiDAR and image sequences, as well as standard driving behaviors. Our dataset includes multiple driving scenarios, such as urban, country, and off-road. Numerous experiments are conducted on both public available LiVi-Set and our own dataset, and the results show that the model using our proposed methods can predict steering angle accurately.

Summary

We haven't generated a summary for this paper yet.