Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Deep Learning for Steering Autonomous Vehicles Considering Temporal Dependencies (1710.03804v3)

Published 10 Oct 2017 in cs.LG

Abstract: Steering a car through traffic is a complex task that is difficult to cast into algorithms. Therefore, researchers turn to training artificial neural networks from front-facing camera data stream along with the associated steering angles. Nevertheless, most existing solutions consider only the visual camera frames as input, thus ignoring the temporal relationship between frames. In this work, we propose a Convolutional Long Short-Term Memory Recurrent Neural Network (C-LSTM), that is end-to-end trainable, to learn both visual and dynamic temporal dependencies of driving. Additionally, We introduce posing the steering angle regression problem as classification while imposing a spatial relationship between the output layer neurons. Such method is based on learning a sinusoidal function that encodes steering angles. To train and validate our proposed methods, we used the publicly available Comma.ai dataset. Our solution improved steering root mean square error by 35% over recent methods, and led to a more stable steering by 87%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hesham M. Eraqi (14 papers)
  2. Mohamed N. Moustafa (7 papers)
  3. Jens Honer (6 papers)
Citations (113)

Summary

We haven't generated a summary for this paper yet.