Papers
Topics
Authors
Recent
2000 character limit reached

A modified discrepancy principle to attain optimal convergence rates under unknown noise

Published 5 Mar 2021 in math.NA and cs.NA | (2103.03545v3)

Abstract: We consider a linear ill-posed equation in the Hilbert space setting. Multiple independent unbiased measurements of the right hand side are available. A natural approach is to take the average of the measurements as an approximation of the right hand side and to estimate the data error as the inverse of the square root of the number of measurements. We calculate the optimal convergence rate (as the number of measurements tends to infinity) under classical source conditions and introduce a modified discrepancy principle, which asymptotically attains this rate.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.