Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual gradient method for ill-posed problems using multiple repeated measurement data (2211.14454v1)

Published 26 Nov 2022 in math.NA, cs.NA, and math.OC

Abstract: We consider determining $\R$-minimizing solutions of linear ill-posed problems $A x = y$, where $A: {\mathscr X} \to {\mathscr Y}$ is a bounded linear operator from a Banach space ${\mathscr X}$ to a Hilbert space ${\mathscr Y}$ and ${\mathcal R}: {\mathscr X} \to [0, \infty]$ is a proper strongly convex penalty function. Assuming that multiple repeated independent identically distributed unbiased data of $y$ are available, we consider a dual gradient method to reconstruct the ${\mathcal R}$-minimizing solution using the average of these data. By terminating the method by either an {\it a priori} stopping rule or a statistical variant of the discrepancy principle, we provide the convergence analysis and derive convergence rates when the sought solution satisfies certain variational source conditions. Various numerical results are reported to test the performance of the method.

Summary

We haven't generated a summary for this paper yet.