Conformal quantum mechanics & the integrable spinning Fishnet (2103.01940v4)
Abstract: In this paper we consider systems of quantum particles in the $4d$ Euclidean space which enjoy conformal symmetry. The algebraic relations for conformal-invariant combinations of positions and momenta are used to construct a solution of the Yang-Baxter equation in the unitary irreducibile representations of the principal series $\Delta=2+i\nu$ for any left/right spins $\ell,\dot{\ell}$ of the particles. Such relations are interpreted in the language of Feynman diagrams as integral \emph{star-triangle} identites between propagators of a conformal field theory. We prove the quantum integrability of a spin chain whose $k$-th site hosts a particle in the representation $(\Delta_k,\ell_k, \dot{ \ell}_k)$ of the conformal group, realizing a spinning and inhomogeneous version of the quantum magnet used to describe the spectrum of the bi-scalar Fishnet theories. For the special choice of particles in the scalar $(1,0,0)$ and fermionic $(3/2,1,0)$ representation the transfer matrices of the model are Bethe-Salpeter kernels for the double-scaling limit of specific two-point correlators in the $\gamma$-deformed $\mathcal{N}=4$ and $\mathcal{N}=2$ supersymmetric theories.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.