Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MultiWalk: A Framework to Generate Node Embeddings Based on an Ensemble of Walk Methods (2102.11691v1)

Published 23 Feb 2021 in cs.SI

Abstract: Graph embeddings are low dimensional representations of nodes, edges or whole graphs. Such representations allow for data in a network format to be used along with machine learning models for a variety of tasks (e.g., node classification), where using a similarity matrix would be impractical. In recent years, many methods for graph embedding generation have been created based on the idea of random walks. We propose MultiWalk, a framework that uses an ensemble of these methods to generate the embeddings. Our experiments show that the proposed framework, using an ensemble composed of two state-of-the-art methods, can generate embeddings that perform better in classification tasks than each method in isolation.

Summary

We haven't generated a summary for this paper yet.