Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Information-Theoretic Bounds for Integral Estimation (2102.10199v1)

Published 19 Feb 2021 in math.NA, cs.LG, and cs.NA

Abstract: In this paper, we consider a zero-order stochastic oracle model of estimating definite integrals. In this model, integral estimation methods may query an oracle function for a fixed number of noisy values of the integrand function and use these values to produce an estimate of the integral. We first show that the information-theoretic error lower bound for estimating the integral of a $d$-dimensional function over a region with $l_\infty$ radius $r$ using at most $T$ queries to the oracle function is $\Omega(2d r{d+1}\sqrt{d/T})$. Additionally, we find that the Gaussian Quadrature method under the same model achieves a rate of $O(2{d}rd/\sqrt{T})$ for functions with zero fourth and higher-order derivatives with respect to individual dimensions, and for Gaussian oracles, this rate is tight. For functions with nonzero fourth derivatives, the Gaussian Quadrature method achieves an upper bound which is not tight with the information-theoretic lower bound. Therefore, it is not minimax optimal, so there is space for the development of better integral estimation methods for such functions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.