Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Information-Theoretic Lower Bounds for Zero-Order Stochastic Gradient Estimation (2003.13881v2)

Published 31 Mar 2020 in cs.LG and stat.ML

Abstract: In this paper we analyze the necessary number of samples to estimate the gradient of any multidimensional smooth (possibly non-convex) function in a zero-order stochastic oracle model. In this model, an estimator has access to noisy values of the function, in order to produce the estimate of the gradient. We also provide an analysis on the sufficient number of samples for the finite difference method, a classical technique in numerical linear algebra. For $T$ samples and $d$ dimensions, our information-theoretic lower bound is $\Omega(\sqrt{d/T})$. We show that the finite difference method for a bounded-variance oracle has rate $O(d{4/3}/\sqrt{T})$ for functions with zero third and higher order derivatives. These rates are tight for Gaussian oracles. Thus, the finite difference method is not minimax optimal, and therefore there is space for the development of better gradient estimation methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube