Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Destination similarity based on implicit user interest (2102.06687v2)

Published 12 Feb 2021 in cs.IR and cs.CV

Abstract: With the digitization of travel industry, it is more and more important to understand users from their online behaviors. However, online travel industry data are more challenging to analyze due to extra sparseness, dispersed user history actions, fast change of user interest and lack of direct or indirect feedbacks. In this work, a new similarity method is proposed to measure the destination similarity in terms of implicit user interest. By comparing the proposed method to several other widely used similarity measures in recommender systems, the proposed method achieves a significant improvement on travel data. Key words: Destination similarity, Travel industry, Recommender System, Implicit user interest

Citations (1)

Summary

We haven't generated a summary for this paper yet.