Papers
Topics
Authors
Recent
2000 character limit reached

Structure vs. Randomness for Bilinear Maps

Published 9 Feb 2021 in math.CO, cs.CC, and math.AG | (2102.04657v2)

Abstract: We prove that the slice rank of a 3-tensor (a combinatorial notion introduced by Tao in the context of the cap-set problem), the analytic rank (a Fourier-theoretic notion introduced by Gowers and Wolf), and the geometric rank (an algebro-geometric notion introduced by Kopparty, Moshkovitz, and Zuiddam) are all equal up to an absolute constant. As a corollary, we obtain strong trade-offs on the arithmetic complexity of a biased bilinear map, and on the separation between computing a bilinear map exactly and on average. Our result settles open questions of Haramaty and Shpilka [STOC 2010], and of Lovett [Discrete Anal. 2019] for 3-tensors.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.