Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational Bayes survival analysis for unemployment modelling (2102.02295v2)

Published 3 Feb 2021 in stat.AP and cs.AI

Abstract: Mathematical modelling of unemployment dynamics attempts to predict the probability of a job seeker finding a job as a function of time. This is typically achieved by using information in unemployment records. These records are right censored, making survival analysis a suitable approach for parameter estimation. The proposed model uses a deep artificial neural network (ANN) as a non-linear hazard function. Through embedding, high-cardinality categorical features are analysed efficiently. The posterior distribution of the ANN parameters are estimated using a variational Bayes method. The model is evaluated on a time-to-employment data set spanning from 2011 to 2020 provided by the Slovenian public employment service. It is used to determine the employment probability over time for each individual on the record. Similar models could be applied to other questions with multi-dimensional, high-cardinality categorical data including censored records. Such data is often encountered in personal records, for example in medical records.

Citations (8)

Summary

We haven't generated a summary for this paper yet.