Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Using Markov transition matrices to generate trial configurations in Markov chain Monte Carlo simulations (2101.12623v4)

Published 29 Jan 2021 in cond-mat.stat-mech, cond-mat.soft, hep-lat, and physics.comp-ph

Abstract: We propose a new Markov chain Monte Carlo method in which trial configurations are generated by evolving a state, sampled from a prior distribution, using a Markov transition matrix. We present two prototypical algorithms and derive their corresponding acceptance rules. We first identify the important factors controlling the quality of the sampling. We then apply the method to the problem of sampling polymer configurations with fixed endpoints. Applications of the proposed method range from the design of new generative models to the improvement of the portability of specific Monte Carlo algorithms, like configurational-bias schemes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.