Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tell Me Who Your Friends Are: Using Content Sharing Behavior for News Source Veracity Detection (2101.10973v1)

Published 15 Jan 2021 in cs.SI, cs.CY, and cs.LG

Abstract: Stopping the malicious spread and production of false and misleading news has become a top priority for researchers. Due to this prevalence, many automated methods for detecting low quality information have been introduced. The majority of these methods have used article-level features, such as their writing style, to detect veracity. While writing style models have been shown to work well in lab-settings, there are concerns of generalizability and robustness. In this paper, we begin to address these concerns by proposing a novel and robust news veracity detection model that uses the content sharing behavior of news sources formulated as a network. We represent these content sharing networks (CSN) using a deep walk based method for embedding graphs that accounts for similarity in both the network space and the article text space. We show that state of the art writing style and CSN features make diverse mistakes when predicting, meaning that they both play different roles in the classification task. Moreover, we show that the addition of CSN features increases the accuracy of writing style models, boosting accuracy as much as 14\% when using Random Forests. Similarly, we show that the combination of hand-crafted article-level features and CSN features is robust to concept drift, performing consistently well over a 10-month time frame.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Maurício Gruppi (15 papers)
  2. Benjamin D. Horne (28 papers)
  3. Sibel Adalı (23 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.