Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

B-HAR: an open-source baseline framework for in depth study of human activity recognition datasets and workflows (2101.10870v2)

Published 23 Jan 2021 in eess.SP, cs.AI, and cs.LG

Abstract: Human Activity Recognition (HAR), based on machine and deep learning algorithms is considered one of the most promising technologies to monitor professional and daily life activities for different categories of people (e.g., athletes, elderly, kids, employers) in order to provide a variety of services related, for example to well-being, empowering of technical performances, prevention of risky situation, and educational purposes. However, the analysis of the effectiveness and the efficiency of HAR methodologies suffers from the lack of a standard workflow, which might represent the baseline for the estimation of the quality of the developed pattern recognition models. This makes the comparison among different approaches a challenging task. In addition, researchers can make mistakes that, when not detected, definitely affect the achieved results. To mitigate such issues, this paper proposes an open-source automatic and highly configurable framework, named B-HAR, for the definition, standardization, and development of a baseline framework in order to evaluate and compare HAR methodologies. It implements the most popular data processing methods for data preparation and the most commonly used machine and deep learning pattern recognition models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. V. Bianchi, M. Bassoli, G. Lombardo, P. Fornacciari, M. Mordonini, and I. De Munari, “Iot wearable sensor and deep learning: An integrated approach for personalized human activity recognition in a smart home environment,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8553–8562, 2019.
  2. A. Poli, G. Cosoli, L. Scalise, and S. Spinsante, “Impact of wearable measurement properties and data quality on adls classification accuracy,” IEEE Sensors Journal, 2020.
  3. F. Demrozi, N. Serlonghi, C. Turetta, C. Pravadelli, and G. Pravadelli, “Exploiting bluetooth low energy smart tags for virtual coaching,” in 2021 IEEE 7th World Forum on Internet of Things (WF-IoT).   IEEE, 2021, pp. 470–475.
  4. F. Demrozi, R. Bacchin, S. Tamburin, M. Cristani, and G. Pravadelli, “Towards a wearable system for predicting the freezing of gait in people affected by parkinson’s disease,” IEEE journal of biomedical and health informatics, 2019.
  5. F. Demrozi, V. Bragoi, F. Tramarin, and G. Pravadelli, “An indoor localization system to detect areas causing the freezing of gait in parkinsonians,” in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2019, pp. 952–955.
  6. O. D. Lara and M. A. Labrador, “A survey on human activity recognition using wearable sensors,” IEEE communications surveys & tutorials, vol. 15, no. 3, pp. 1192–1209, 2012.
  7. E. Fullerton, B. Heller, and M. Munoz-Organero, “Recognizing human activity in free-living using multiple body-worn accelerometers,” IEEE Sensors Journal, vol. 17, no. 16, pp. 5290–5297, 2017.
  8. F. Demrozi, M. Jereghi, and G. Pravadelli, “Towards the automatic data annotation for human activity recognition based on wearables and ble beacons,” in 2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL).   IEEE, 2021, pp. 1–4.
  9. L. Pucci, E. Testi, E. Favarelli, and A. Giorgetti, “Human activities classification using biaxial seismic sensors,” IEEE Sensors Letters, vol. 4, no. 10, pp. 1–4, 2020.
  10. E. Gambi, G. Temperini, R. Galassi, L. Senigagliesi, and A. De Santis, “Adl recognition through machine learning algorithms on iot air quality sensor dataset,” IEEE Sensors Journal, vol. 20, no. 22, pp. 13 562–13 570, 2020.
  11. J. Lu, X. Zheng, M. Sheng, J. Jin, and S. Yu, “Efficient human activity recognition using a single wearable sensor,” IEEE Internet of Things Journal, 2020.
  12. J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for visual recognition and description,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 2625–2634.
  13. C. P. Burgos, L. Gärtner, M. A. G. Ballester, J. Noailly, F. Stöcker, M. Schönfelder, T. Adams, and S. Tassani, “In-ear accelerometer-based sensor for gait classification,” IEEE Sensors Journal, vol. 20, no. 21, pp. 12 895–12 902, 2020.
  14. F. Demrozi, G. Pravadelli, A. Bihorac, and P. Rashidi, “Human activity recognition using inertial, physiological and environmental sensors: A comprehensive survey,” IEEE Access, pp. 1–1, 2020.
  15. F. Demrozi, G. Pravadelli, P. J. Tighe, A. Bihorac, and P. Rashidi, “Joint distribution and transitions of pain and activity in critically ill patients,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), 2020, pp. 4534–4538.
  16. J. Black, W. Segmuller, N. Cohen, B. Leiba, A. Misra, M. Ebling, and E. Stern, “Pervasive computing in health care: Smart spaces and enterprise information systems,” in MobiSys 2004 Workshop on Context Awareness, 2004.
  17. A. Kameas and I. Calemis, “Pervasive systems in health care,” in Handbook of ambient intelligence and smart environments.   Springer, 2010, pp. 315–346.
  18. E. Kanjo, E. M. Younis, and C. S. Ang, “Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection,” Information Fusion, vol. 49, pp. 46–56, 2019.
  19. J. Brownlee, “How to grid search hyperparameters for deep learning models in python with keras,” Retrieved April, vol. 20, p. 2018, 2016.
  20. J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone accelerometers,” ACM SigKDD Explorations Newsletter, vol. 12, no. 2, pp. 74–82, 2011.
  21. D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha et al., “Collecting complex activity datasets in highly rich networked sensor environments,” in 2010 Seventh international conference on networked sensing systems (INSS).   IEEE, 2010, pp. 233–240.
  22. M. Bachlin, M. Plotnik, D. Roggen, I. Maidan, J. M. Hausdorff, N. Giladi, and G. Troster, “Wearable assistant for parkinson’s disease patients with the freezing of gait symptom,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 2, pp. 436–446, 2009.
  23. A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for activity monitoring,” in 2012 16th International Symposium on Wearable Computers.   IEEE, 2012, pp. 108–109.
  24. P. Zappi, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and G. Troster, “Activity recognition from on-body sensors by classifier fusion: sensor scalability and robustness,” in 2007 3rd international conference on intelligent sensors, sensor networks and information.   IEEE, 2007, pp. 281–286.
  25. D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain dataset for human activity recognition using smartphones.” in Esann, 2013.
  26. M. Zhang and A. A. Sawchuk, “Usc-had: a daily activity dataset for ubiquitous activity recognition using wearable sensors,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing.   ACM, 2012, pp. 1036–1043.
  27. A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard, A. Dey, T. Sonne, and M. M. Jensen, “Smart devices are different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition,” in Proceedings of the 13th ACM conference on embedded networked sensor systems, 2015, pp. 127–140.
  28. O. Banos, R. Garcia, J. A. Holgado-Terriza, M. Damas, H. Pomares, I. Rojas, A. Saez, and C. Villalonga, “mhealthdroid: a novel framework for agile development of mobile health applications,” in International workshop on ambient assisted living.   Springer, 2014, pp. 91–98.
  29. O. Baños, M. Damas, H. Pomares, I. Rojas, M. A. Tóth, and O. Amft, “A benchmark dataset to evaluate sensor displacement in activity recognition,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing.   ACM, 2012, pp. 1026–1035.
  30. J. W. Lockhart, G. M. Weiss, J. C. Xue, S. T. Gallagher, A. B. Grosner, and T. T. Pulickal, “Design considerations for the wisdm smart phone-based sensor mining architecture,” in Proceedings of the Fifth International Workshop on Knowledge Discovery from Sensor Data, 2011, pp. 25–33.
  31. I. Pratama, A. E. Permanasari, I. Ardiyanto, and R. Indrayani, “A review of missing values handling methods on time-series data,” in 2016 International Conference on Information Technology Systems and Innovation (ICITSI).   IEEE, 2016, pp. 1–6.
  32. “Sensormotion,” https://pypi.org/project/sensormotion/, accessed: 2020-11-24.
  33. M. Barandas, D. Folgado, L. Fernandes, S. Santos, M. Abreu, P. Bota, H. Liu, T. Schultz, and H. Gamboa, “Tsfel: Time series feature extraction library,” SoftwareX, vol. 11, p. 100456, 2020.
  34. M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. Havinga, “A survey of online activity recognition using mobile phones,” Sensors, vol. 15, no. 1, pp. 2059–2085, 2015.
  35. G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.
  36. G. Lemaître, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning,” Journal of Machine Learning Research, vol. 18, no. 17, pp. 1–5, 2017. [Online]. Available: http://jmlr.org/papers/v18/16-365
  37. H. He, Y. Bai, E. Garcia, and S. A. Li, “Adaptive synthetic sampling approach for imbalanced learning. ieee international joint conference on neural networks. 2008,” 2008.
  38. D. M. Powers, “Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation,” –, 2011.
  39. G. M. Weiss, K. Yoneda, and T. Hayajneh, “Smartphone and smartwatch-based biometrics using activities of daily living,” IEEE Access, vol. 7, pp. 133 190–133 202, 2019.
  40. L. T. Nguyen, M. Zeng, P. Tague, and J. Zhang, “Recognizing new activities with limited training data,” in Proceedings of the 2015 ACM International Symposium on Wearable Computers, 2015, pp. 67–74.
  41. F. Demrozi, F. Chiarani, and G. Pravadelli, “A low-cost ble-based distance estimation, occupancy detection and counting system,” in ACM/IEEE DATE, 2021.
  42. F. Demrozi, C. Turetta, F. Chiarani, P. H. Kindt, and G. Pravadelli, “Estimating indoor occupancy through low-cost ble devices,” IEEE Sensors Journal, 2021.
Citations (8)

Summary

We haven't generated a summary for this paper yet.