Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation capability of two hidden layer feedforward neural networks with fixed weights (2101.09181v1)

Published 22 Jan 2021 in cs.NE, cs.IT, cs.NA, math.IT, and math.NA

Abstract: We algorithmically construct a two hidden layer feedforward neural network (TLFN) model with the weights fixed as the unit coordinate vectors of the $d$-dimensional Euclidean space and having $3d+2$ number of hidden neurons in total, which can approximate any continuous $d$-variable function with an arbitrary precision. This result, in particular, shows an advantage of the TLFN model over the single hidden layer feedforward neural network (SLFN) model, since SLFNs with fixed weights do not have the capability of approximating multivariate functions.

Citations (63)

Summary

We haven't generated a summary for this paper yet.