Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
37 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Adversarial Laws of Large Numbers and Optimal Regret in Online Classification (2101.09054v1)

Published 22 Jan 2021 in cs.LG, cs.CR, cs.DS, math.ST, stat.ML, and stat.TH

Abstract: Laws of large numbers guarantee that given a large enough sample from some population, the measure of any fixed sub-population is well-estimated by its frequency in the sample. We study laws of large numbers in sampling processes that can affect the environment they are acting upon and interact with it. Specifically, we consider the sequential sampling model proposed by Ben-Eliezer and Yogev (2020), and characterize the classes which admit a uniform law of large numbers in this model: these are exactly the classes that are \emph{online learnable}. Our characterization may be interpreted as an online analogue to the equivalence between learnability and uniform convergence in statistical (PAC) learning. The sample-complexity bounds we obtain are tight for many parameter regimes, and as an application, we determine the optimal regret bounds in online learning, stated in terms of \emph{Littlestone's dimension}, thus resolving the main open question from Ben-David, P\'al, and Shalev-Shwartz (2009), which was also posed by Rakhlin, Sridharan, and Tewari (2015).

Citations (46)

Summary

We haven't generated a summary for this paper yet.