Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Closer Look at Temporal Sentence Grounding in Videos: Dataset and Metric (2101.09028v3)

Published 22 Jan 2021 in cs.CV

Abstract: Temporal Sentence Grounding in Videos (TSGV), i.e., grounding a natural language sentence which indicates complex human activities in a long and untrimmed video sequence, has received unprecedented attentions over the last few years. Although each newly proposed method plausibly can achieve better performance than previous ones, current TSGV models still tend to capture the moment annotation biases and fail to take full advantage of multi-modal inputs. Even more incredibly, several extremely simple baselines without training can also achieve state-of-the-art performance. In this paper, we take a closer look at the existing evaluation protocols for TSGV, and find that both the prevailing dataset splits and evaluation metrics are the devils to cause unreliable benchmarking. To this end, we propose to re-organize two widely-used TSGV benchmarks (ActivityNet Captions and Charades-STA). Specifically, we deliberately make the ground-truth moment distribution different in the training and test splits, i.e., out-of-distribution (OOD) testing. Meanwhile, we introduce a new evaluation metric dR@n,IoU@m to calibrate the basic IoU scores by penalizing on the bias-influenced moment predictions and alleviate the inflating evaluations caused by the dataset annotation biases such as overlong ground-truth moments. Under our new evaluation protocol, we conduct extensive experiments and ablation studies on eight state-of-the-art TSGV methods. All the results demonstrate that the re-organized dataset splits and new metric can better monitor the progress in TSGV. Our reorganized datsets are available at https://github.com/yytzsy/grounding_changing_distribution.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yitian Yuan (16 papers)
  2. Xiaohan Lan (7 papers)
  3. Xin Wang (1307 papers)
  4. Long Chen (395 papers)
  5. Zhi Wang (261 papers)
  6. Wenwu Zhu (104 papers)
Citations (45)

Summary

We haven't generated a summary for this paper yet.