Perturbative and Nonperturbative Studies of CFTs with MN Global Symmetry (2101.08788v2)
Abstract: Fixed points in three dimensions described by conformal field theories with $MN_{m,n}= O(m)n\rtimes S_n$ global symmetry have extensive applications in critical phenomena. Associated experimental data for $m=n=2$ suggest the existence of two non-trivial fixed points, while the $\varepsilon$ expansion predicts only one, resulting in a puzzling state of affairs. A recent numerical conformal bootstrap study has found two kinks for small values of the parameters $m$ and $n$, with critical exponents in good agreement with experimental determinations in the $m=n=2$ case. In this paper we investigate the fate of the corresponding fixed points as we vary the parameters $m$ and $n$. We find that one family of kinks approaches a perturbative limit as $m$ increases, and using large spin perturbation theory we construct a large $m$ expansion that fits well with the numerical data. This new expansion, akin to the large $N$ expansion of critical $O(N)$ models, is compatible with the fixed point found in the $\varepsilon$ expansion. For the other family of kinks, we find that it persists only for $n=2$, where for large $m$ it approaches a non-perturbative limit with $\Delta_\phi\approx 0.75$. We investigate the spectrum in the case $MN_{100,2}$ and find consistency with expectations from the lightcone bootstrap.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run custom paper prompts using GPT-5 on this paper.